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Abstract13

Strongly coupled data assimilation (SCDA), such as using atmospheric observations to14

update ocean analyses, is critical for properly initializing Earth System models to pre-15

dict subseasonal to decadal timescales. We show that a Kalman filter with a linear em-16

ulator of the coupled dynamics can be used to efficiently assimilate observations with17

SCDA. A linear inverse model (LIM), trained on 25 years of Climate Forecast System18

Reanalysis gridded data, is used to assimilate observations daily during an independent19

7-year period. SCDA sea-surface temperature (SST) analysis errors are reduced over 20%20

in global-mean mean-squared error relative to a control experiment where only SST ob-21

servations are assimilated with an SST LIM. The analysis improvements enhance fore-22

cast skill for leads of at least 50 days. In contrast, analyses of 2m air temperature are23

little changed, and forecast errors increase, for coupled data assimilation in these exper-24

iments.25

Plain Language Summary26

Using observations to consistently initialize a forecast is very difficult with coupled27

Earth system models due to their enormous computational demand. Here we show that28

a simplified model can be used to improve forecasts through this initialization process.29

In particular, we show that this approach allows observations of the atmosphere to be30

used to estimate sea-surface temperature (SST) and to improve forecasts of SST when31

compared to an approach that uses only observations of SST. This suggests the poten-32

tial to improve SST forecasts one to two months in the future using such an approach.33

1 Introduction34

Many problems in weather and climate, such as subseasonal and decadal forecast-35

ing, involve initializing coupled Earth System models to predict future states (e.g., Zhang36

et al., 2005; Yang et al., 2013; Lea et al., 2015; Laloyaux et al., 2016; S. G. Penny & Hamill,37

2017; S. G. Penny et al., 2017). Initialization typically involves using observations of the38

system to improve an existing estimate, such as a forecast from an earlier time, using39

data assimilation (DA). In addition to a prior estimate of the state, DA requires an es-40

timate of the errors, which significantly elevates the demands on an already computa-41

tionally intensive set of calculations. This burden has slowed experimentation and al-42

gorithm development in coupled data assimilation (S. Penny, Akella, et al., 2019), and43

promoted implementations where coupled DA is approximated. Building on recent work44

in coupled paleoclimate DA (Perkins & Hakim, 2021), we test the hypothesis that a stochas-45

tically forced linear emulator of the coupled atmosphere–ocean dynamics can be used46

for coupled DA to improve subseasonal forecasts.47

In the context of atmosphere–ocean coupled forecasting, strongly coupled DA (SCDA)48

involves assimilating observations to apply updates across the domain interface. This al-49

lows, for example, relatively more abundant atmospheric observations to inform the ocean50

analysis. To work well, SCDA requires an accurate estimate of the covariance between51

the atmospheric observations and the ocean variables (e.g., Sluka et al., 2016), which con-52

tributes to the aforementioned computational demands. A range of weakly coupled DA53

(WCDA) approaches approximate SCDA. A common one, which we adopt here, is to use54

separate DA systems for the atmosphere and the ocean, in order to generate indepen-55

dent analyses in each domain using only the observations in that domain (S. Penny, Bach,56

et al., 2019). For WCDA, coupling occurs during the forecast step, when a coupled model57

evolves the state from the analysis to the next assimilation time. A significant drawback58

of WCDA is that observations of one domain do not directly affect the other, which could59

lead to imbalances between the atmosphere and ocean during the forecast step (Zhang,60

2011; Mulholland et al., 2015).61
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In this study, we use SCDA to generate initial conditions for subseasonal forecasts.62

To break the computational bottleneck for SCDA, we use a linear inverse model (LIM;63

Penland & Sardeshmukh, 1995; Newman et al., 2003; Albers & Newman, 2019) for cou-64

pled atmosphere–ocean prediction. Although LIMs have long been used for subseasonal65

prediction (e.g., Newman et al., 2003; Albers & Newman, 2019), we believe the appli-66

cation to SCDA is novel. The LIM is trained on Climate Forecast System Reanalysis (CFSR)67

data (Saha et al., 2014), and applied to DA experiments using a Kalman filter on ob-68

servations of both atmosphere and ocean variables. We compare the errors in analyses69

and forecasts for SCDA with WCDA and atmosphere-only and ocean-only DA, and find70

that SCDA is particularly important for SST prediction. This proof-of-concept calcu-71

lation may also be useful for developers of SCDA systems, since LIMs trained on the out-72

put of complex models are straightforward to develop for prototype applications and hy-73

pothesis testing. For example, since the LIM forecasts are skillful to at least 50 days, this74

approach may prove useful for improving operational forecasts on subseasonal to seasonal75

timescales.76

2 Methods and Data77

Here we describe the data (section 2.1), linear inverse modeling (section 2.2), Kalman78

filtering (section 2.3), observations and their errors (section 2.4), and validation and er-79

ror quantification (section 2.5).80

2.1 Data81

All data for this study are taken from the Climate Forecast System Reanalysis (Saha82

et al., 2014) (CFSR), which is defined on global lat–lon grids. Calculations related to83

training pertain to the period 1979–2003; validation is performed over 2004–2010. Grid-84

ded CFSR data is available every 6 hours, which we first average to daily, and then to85

a running 5-day mean. The seasonal cycle is then defined at each grid point by the lead-86

ing three Fourier harmonics of the annual cycle averaged over the training period, and87

removed from the 5-day-average data. The LIM state vector is defined by the following88

variables: 2m air temperature (T2m), sea-surface temperature (SST), u and v wind com-89

ponents at 850 hPa (u850 and v850), and outgoing longwave radiation (OLR). Each field90

is truncated to the leading 30 empirical orthogonal functions (EOFs), which are com-91

puted from grid point values area weighted by cos(φ)1/2, where φ is latitude. This trun-92

cation retains about 50–60% of the variance for all variables but OLR (33%). Each vari-93

able is standardized after truncation to unit variance. Increasing the number of EOFs94

leads to overfitting the LIM, although results are insensitive to the exact truncation value.95

2.2 Linear inverse model96

LIMs capture the linearized dynamics of anomalies about a chosen mean state, where97

the anomalies have zero mean, with zero-lag time-mean covariance matrix C0. For state98

vector x, a LIM is defined by (e.g., Penland & Sardeshmukh, 1995)99

dx

dt
= Lx + ξ, (1)

where t is time, L is a matrix containing the deterministic dynamics, and ξ is a random100

vector that is uncorrelated in time (but has correlations in the state dimension). The101

first integral of (1) yields a mapping from any initial condition to the forecast at lag δt,102

x(t+ δt) = Gδtx(t) + n, (2)

where Gδt is related to L by103

Gδt = exp(Lδt) (3)
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and n is the integrated contribution from the random vector, ξ. Assuming that the state104

and the error are uncorrelated, (2) gives a forecast equation for the error covariance105

cov(x(t+ δt),x(t+ δt)) = Gδtcov(x(t),x(t))GT
δt + Nδt (4)

where Nδt is the stochastic error covariance specific to the time lag δt. Since (4) applies106

to any initial condition, including C0, and the covariance statistics are stationary, we may107

solve for Nδt algebraically (Penland, 1989, eqn. 11):108

Nδt = C0 − GδtC0G
T
δt. (5)

We calibrate the LIM using CFSR data during the training period by determin-109

ing the least-squares solution to (2) for δt = 5 days, and then recover L from (3). For110

any lead time δt, Gδt is defined from L by (3) and Nδt by (5).111

2.3 Kalman filter112

Given a set of observations and a prior estimate of the state mean and covariance,113

the Kalman filter gives the best linear unbiased estimator for the analysis mean114

xa = xf + K(y − Hxf ) (6)

and covariance115

Pa = (I − KH)Pf . (7)

The Kalman gain matrix is given by116

K = PfH
T
[
HPfH

T + R
]−1

, (8)

xf and Pf are the prior mean and covariance, respectively, xa and Pa are the analysis117

mean and covariance, respectively, y is a vector of observations having error covariance118

R, and H is the observation operator, which maps from the state to the observations.119

Having solved for xa and Pa at one time, (2) (with n = 0) and (4), respectively, are120

solved for xf and Pf at the next time that observations are available, which allows (6)–121

(7) to be solved again; this process is repeated one day at a time for the entire valida-122

tion period.123

2.4 Observations124

Observations are drawn once each day for every variable directly from the CFSR125

gridded data, and estimated from the truncated EOF basis of the LIM,126

y = Ĥx̂ = Hx + ε, (9)

where x̂ is the CFSR lat–lon gridded data and x is the truncation of x̂ to the EOF ba-127

sis for the variable. The observation operator in the LIM basis, H, is related to the ob-128

servation operator on the lat–lon grid, Ĥ, by H = ĤU, where the (30) columns of U129

are the EOFs. Observations are defined on a regular grid every 10◦ latitude, and in lon-130

gitude every 10◦/ cos(φ), where φ is latitude; observation locations are shown on Fig. 3.131

Since observations are drawn directly from the CFSR analysis grids by Ĥ, the ob-132

servation error covariance in (8), R, is determined completely by representativeness er-133

ror from the EOF truncation: R = cov(ε, ε). However, the truncation error for each134

variable is not independent of the resolved components of the other variables, so we de-135

fine a second observation operator by removing a linear estimate of the dependent part136

of the truncation error,137

ε = AHx + e. (10)

Matrix A is found by least-squares regression to minimize var(e) during the training pe-138

riod, and the observation error covariance matrix in this case is given by R = cov(e, e).139

We shall refer to use of this observation operator and observation-error covariance as “regression-140

R, and use of (9) and R = cov(ε, ε) as “control-R.”141
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2.5 Error quantification and validation142

Errors are measured in observation space and on the full lat–lon grid. The misfit143

to observations of the one-day forecast is defined as144

d = y − Hxf . (11)

If all errors are consistently specified, the covariance of the misfits averaged over all val-145

idation times should approximately equal the innovation covariance from (8) (e.g., Houtekamer146

& Mitchell, 1998),147

cov(d,d) ≈ HPfH
T + R. (12)

We note that, because H,R,G, and N are constant, (4) and (7) reveal that Pf and Pa148

are as well, so that the right-side of (12) has a single value.149

Errors on the lat–lon grid are defined with respect to the truncated EOF basis. We150

compute the mean-squared error (MSE) of the analyses and forecasts to 50 days lead time151

during the validation period at all grid points, and area weight the global mean of these152

values. When comparing different experiments, we compute the percentage change in153

global-mean MSE. For brevity, we limit the analysis of atmospheric variables to T2m;154

results for the others are qualitatively similar.155

3 Results156

We present results for WCDA and SCDA experiments, compared to separate con-157

trol experiments for the atmosphere and ocean. The atmospheric control experiment con-158

sists of cycling DA on atmospheric observations only, and the model used in the fore-159

cast step ((2) with n = 0, and (4)) is limited to the atmospheric elements of L. Sim-160

ilarly, the oceanic control experiment consists of cycling DA on SST observations only,161

and the model used in the forecast step is limited to predicting SST from SST alone. We162

note that the control experiments are not directly comparable to operational systems for163

the atmosphere and ocean, since the LIM has no explicit boundary conditions, and atmosphere–164

ocean coupling is implicit from the training of the LIM variables. The weakly coupled165

data assimilation (WCDA) experiment is defined by a coupled forecast using the full LIM,166

with separate DA in the atmosphere and ocean, and no “cross-domain” covariances. Specif-167

ically, WCDA sets to zero those entries of Pf corresponding to covariances between SST168

and the atmospheric variables. The strongly coupled data assimilation (SCDA) exper-169

iment is defined by a coupled forecast using the full LIM, and full coupling in the anal-170

ysis, so that atmospheric observations affect the SST analysis and vice versa.171

Looking first at the fit of the one-day forecast to observations, from (12) we com-172

pute for each observation i the calibration ratio173

cov(d,d)ii/[HPfH
T + R]ii (13)

and summarize the distribution over all observations in violin plots (Fig. 1). For the control-174

R case, where observation errors are defined simply by truncation error, results for all175

experiments show smaller errors in the mean analysis than expected from the innova-176

tion variance. This over-dispersion is largely corrected when using regression-R, with177

particularly good calibration for SCDA and all experiments for SST. For T2m, WCDA178

and the control experiment show over-dispersion for regression-R, with longer tails to-179

ward larger values. For the remainder of the results we adopt regression-R.180

For T2m forecasts over the 7-year validation period, the global-mean MSE increases181

rapidly with lead time up to about 10 days, and then increases more slowly before sat-182

urating around 20–30 days (Fig. 2, top panel). As an illustration of the spatial distri-183

bution of errors, Fig. 3 shows that at a lag of 10 days errors are largest over extratrop-184

ical land masses and the Antarctic coastline. Errors grow more slowly in SST (Fig. 2,185
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Figure 1. Violin plots of calibration ratio ((13); unitless) over all T2m observations (left) and

SST observations (right). Results labeled “control-R” apply to the observation error covariance

defined exclusively by truncation error (9); those labeled “regression-R” remove the component

of error linearly predictable from the truncated state using (10). DA experiments are SCDA,

WCDA, ocean only, and atmosphere only. Bold black lines denote the median of each distribu-

tion.

Figure 2. (top) Global-mean mean-squared error over the validation period for the control

experiments where only atmospheric observations are assimilated using the atmospheric compo-

nent of the LIM (dashed line shows T2m) and SST observations are assimilated using the SST

components of the LIM (solid line). (bottom) % change of SCDA (red) and WCDA (blue) from

the control experiments for T2m (dashed) and SST (solid).
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Figure 3. Spatial pattern of mean-squared error over the validation period for 10-day fore-

casts of (left) T2m and (right) SST. Observation locations are denoted by white dots.

Figure 4. Spatial pattern of % change in mean-squared error during the validation period for

10-day forecasts of (top) WCDA and (bottom) SCDA. (left) T2m and (right) SST.
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top panel), and are not near saturation at 50 days. Spatially, SST errors are localized186

in the eastern tropical Pacific Ocean, and in the midlatitudes (Fig. 3).187

Comparing the coupled-DA experiments against the respective control experiments188

in the atmosphere and ocean reveals that, in the global-mean MSE, WCDA errors are189

larger than the control case (Fig. 2, bottom panel), although the spatial distribution of190

errors at 10-day lead time reveals improvements in the tropical Pacific (Fig. 4, upper left).191

For SCDA, the global-mean MSE shows little change from the control case in the anal-192

ysis, and a slow increase in error during the first 20 days before leveling off at about 2%193

(Fig. 2, bottom panel). Improvements in T2m cover a larger fraction of the tropics com-194

pared to WCDA, and portions of the Southern Hemisphere, with larger increases in er-195

ror relative to the control over large areas of the Northern Hemisphere (Fig. 4, lower left).196

For SST, SCDA shows large improvement relative to the control case, over 20% in the197

global-mean MSE at short leads (Fig. 2, bottom panel), and about 40% over large ar-198

eas (Fig. 4, lower right). Our SST improvements are qualitatively similar to those of Sluka199

et al. (2016) in the tropical Pacific and near the midlatitudes, although they find larger200

improvements over the sub-Arctic North Atlantic.201

A final experiment, aimed at exploring the degradation in T2m forecasts for SCDA,202

is the same as the SCDA case, but excludes SST observations from assimilation (black203

lines in Fig. 2, bottom panel). In this case, SCDA improves upon the control for T2m204

analyses and forecasts up to about 5 days lead, before slowly converging upon the pre-205

vious SCDA results at long leads. SST analysis improvements are much smaller than for206

the SCDA case, but the improvements increase during the forecast, such that they be-207

come about as large as the main SCDA case after about 25 days. These results suggest208

that, even for this low-order linear model, relative to single-domain assimilation, con-209

sistent improvements with SCDA for both atmospheric and oceanic forecasts over a wide210

range of leads will involve more tuning than we have considered here. In particular, the211

stochastic error covariance Nδt in (4) contributes to the cross-domain error covariance,212

but may not be optimal for coupled data assimilation.213

4 Concluding summary214

Strongly coupled data assimilation is essential for Earth System analysis and pre-215

diction because it allows observations to consistently influence components of the sys-216

tem other than those directly measured. This is particularly important when the dynam-217

ics and/or observing density are very different across components, as is the case for the218

atmosphere and ocean. Despite this promise, progress on strongly coupled DA has been219

slowed due to the enormous computational burden of both simulation and assimilation,220

which has promoted the use of weakly coupled approximations where assimilation is per-221

formed independently in each domain. Here we used an empirical model of coupled atmosphere–222

ocean dynamics, the LIM, as a low-dimensional Earth System emulator to test two ap-223

proaches to coupled DA. The LIM is skillful to at least 50 days, and highly computa-224

tionally efficient, so that when integrated with a Kalman filter, it allows us to compare225

the performance of SCDA to WCDA and single-domain control experiments.226

For a LIM calibrated on CFSR data, and DA experiments on observations drawn227

from CFSR during a 7-year validation period, we find that SCDA produces large improve-228

ments to the ocean control case, which has just the ocean component of the LIM and229

SST observations. SCDA SST analysis errors are reduced by over 20% in the global-mean230

compared to the control case, and 40% over local regions. In contrast, WCDA SST anal-231

ysis errors are reduced by only about 5% in the global mean compared to the control,232

and error reduction nearly vanishes by 50 days into the forecast. Forecasts derived from233

SCDA analyses show that the SST analysis error reduction persists through the forecast234

with over 10% improvement compared to the control at 50-days lead. Outside of the trop-235

ics, atmospheric forecasts are degraded in WCDA and SCDA relative to the control cases,236
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although SCDA has smaller error than WCDA at all forecast leads. While we show that237

a portion of this change in performance is due to the assimilation of SST observations,238

the degradation at long leads is not, suggesting that details of the dynamics play an im-239

portant role in conditioning the errors. Future work is needed to explore this issue.240

We also show that SCDA has the best probabilistic reliability when comparing one-241

day forecasts with observations. This result depends on consistent specification of ob-242

servation error statistics, which in our experiments is determined entirely by represen-243

tativeness error due to truncation onto the LIM EOF basis. We find that truncation er-244

ror correlates with the LIM basis, and removing this relationship in the forward oper-245

ator (H) results in SCDA analyses that are well calibrated.246

This work provides a proof-of-concept demonstration that low-dimensional Earth247

System emulators are useful for testing approaches to coupled data assimilation. As such248

they may provide an important tool for rapidly prototyping experiments before deploy-249

ment in the full modeling system. Moreover, since the forecasts are skillful to at least250

50 days, future research may explore how to use this approach for operational forecast-251

ing on subseasonal to seasonal timescales.252

Open Research253

CFSR data may be found at: https://cfs.ncep.noaa.gov/cfsr/. Software de-254

veloped for this research will be openly distributed after publication.255

Acknowledgments256

We thank Robert Tardif for help in data preparation. This research was sponsored by257

NOAA through award NA20NWS4680053.258

References259

Albers, J. R., & Newman, M. (2019). A priori identification of skillful extratropical260

subseasonal forecasts. Geophysical Research Letters, 46 (21), 12527–12536. doi:261

10.1029/2019GL085270262

Houtekamer, P. L., & Mitchell, H. L. (1998). Data assimilation using an ensemble263

kalman filter technique. Monthly Weather Review , 126 (3), 796–811.264

Laloyaux, P., Thépaut, J.-N., & Dee, D. (2016). Impact of scatterometer surface265

wind data in the ECMWF coupled assimilation system. Monthly Weather Re-266

view , 144 (3), 1203–1217.267

Lea, D., Mirouze, I., Martin, M., King, R., Hines, A., Walters, D., & Thurlow, M.268

(2015). Assessing a new coupled data assimilation system based on the Met269

Office coupled atmosphere–land–ocean–sea ice model. Monthly Weather Re-270

view , 143 (11), 4678–4694.271

Mulholland, D. P., Laloyaux, P., Haines, K., & Balmaseda, M. A. (2015). Origin and272

impact of initialization shocks in coupled atmosphere–ocean forecasts. Monthly273

Weather Review , 143 (11), 4631–4644.274

Newman, M., Sardeshmukh, P. D., Winkler, C. R., & Whitaker, J. S. (2003). A275

study of subseasonal predictability. Monthly weather review , 131 (8), 1715–276

1732.277

Penland, C. (1989). Random forcing and forecasting using principal oscillation pat-278

tern analysis. Monthly Weather Review , 117 (10), 2165–2185.279

Penland, C., & Sardeshmukh, P. D. (1995). The optimal growth of tropical sea sur-280

face temperature anomalies. Journal of climate, 8 (8), 1999–2024.281

Penny, S., Akella, S., Balmaseda, M. A., Browne, P., Carton, J. A., Chevallier, M.,282

. . . others (2019). Observational needs for improving ocean and coupled re-283

–9–



manuscript submitted to Geophysical Research Letters

analysis, S2S prediction, and decadal prediction. Frontiers in Marine Science,284

6 , 391.285

Penny, S., Bach, E., Bhargava, K., Chang, C.-C., Da, C., Sun, L., & Yoshida, T.286

(2019). Strongly coupled data assimilation in multiscale media: Experiments287

using a quasi-geostrophic coupled model. Journal of Advances in Modeling288

Earth Systems, 11 (6), 1803–1829.289

Penny, S. G., Akella, S., Alves, O., Bishop, C., Buehner, M., Chevallier, M., . . . Wu,290

X. (2017). Coupled data assimilation for integrated earth system analysis and291

prediction: goals, challenges, and recommendations (Tech. Rep.). Retrieved292

from https://library.wmo.int/doc num.php?explnum id=10830293

Penny, S. G., & Hamill, T. M. (2017). Coupled data assimilation for integrated earth294

system analysis and prediction. Bulletin of the American Meteorological Soci-295

ety , 98 (7), ES169–ES172.296

Perkins, W., & Hakim, G. (2021). Coupled atmosphere–ocean reconstruction of the297

last millennium using online data assimilation. Paleoceanography and Paleocli-298

matology , 36 (5), e2020PA003959.299

Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., . . . others (2014).300

The NCEP climate forecast system version 2. Journal of climate, 27 (6), 2185–301

2208.302

Sluka, T. C., Penny, S. G., Kalnay, E., & Miyoshi, T. (2016). Assimilating at-303

mospheric observations into the ocean using strongly coupled ensemble data304

assimilation. Geophysical Research Letters, 43 (2), 752–759.305

Yang, X., Rosati, A., Zhang, S., Delworth, T. L., Gudgel, R. G., Zhang, R., . . .306

others (2013). A predictable AMO-like pattern in the GFDL fully coupled307

ensemble initialization and decadal forecasting system. Journal of Climate,308

26 (2), 650–661.309

Zhang, S. (2011). A study of impacts of coupled model initial shocks and state–310

parameter optimization on climate predictions using a simple pycnocline pre-311

diction model. Journal of Climate, 24 (23), 6210–6226.312

Zhang, S., Harrison, M., Wittenberg, A., Rosati, A., Anderson, J., & Balaji, V.313

(2005). Initialization of an ENSO forecast system using a parallelized ensemble314

filter. Monthly weather review , 133 (11), 3176–3201.315

–10–


